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Abstract
A connection is made between the random-turns model of vicious walkers and
random permutations indexed by their increasing subsequences. Consequently
the scaled distribution of the maximum displacements in a particular
asymmeteric version of the model can be determined to be the same as the
scaled distribution of the eigenvalues at the soft edge of the GUE (random
Hermitian matrices). The scaling of the distribution gives the maximum mean
displacement µ after t time steps as µ = (2t)1/2 with standard deviation
proportional to µ1/3. The exponent 1/3 is typical of a large class of two-
dimensional growth problems.

PACS numbers: 05.40.Fb, 05.50.+q, 64.60.-i, 02.10.Ab

Non-intersecting (vicious) random walkers were introduced into statistical mechanics [6] as
models of domain walls and wetting in two-dimensional lattice systems, and have also received
attention as exactly solvable systems [3, 4, 7–9]. They can be viewed as directed lattice paths
which start at sites say on the x-axis and finish on sites on the line y = n, with the additional
constraint that the paths do not touch or overlap. Alternatively, vicious random walkers can
be described as the stochastic evolution of particles on a one-dimensional lattice, which at
each tick of the clock move to the right or to the left with a certain probability, subject to the
constraint that no two particles can occupy the one lattice site.

Our interest is in the random-turns vicious-walker model [6, 9]. Here, in the stochastic
evolution picture, at each time step t (t = 1, 2, . . .) one particle is selected at random and moved
one lattice site to the right with probability w1, or one lattice site to the left with probability
w−1 (w−1 + w1 = 1). However, if the lattice site to the right (left) is already occupied, then
the chosen walker moves to the left (right) with a probability of one unless this lattice site is
also occupied. In the latter situation another walker is selected at random and the procedure
repeated until one walker has been moved. The move of precisely one walker thus determines
the state at time interval t . An example of some typical configurations in the directed paths
picture is given in figure 1. We remark that the random-turns vicious-walker model can also
be regarded as a particular asymmetric-exclusion process [17].
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Figure 1. A particular configuration of three random-turns walkers, labelled W1, W2, W3 from
right to left. performing eight steps in the sequenceR4L4. The walk can conveniently be represented
diagrammatically as shown on the right according to the rules specified in the text.

Two aspects of the theory of the random-turns vicious-walker model are the subject of this
letter. The first concerns the number of configurations that have p walkers initially on adjacent
lattice sites (l = 1, . . . , p) on the one-dimensional line, and have the walkers returned to the
same sites after 2n time steps (for an odd number of time steps this is not possible and thus
the reason for 2n). This will be shown to be simply related to the number of permutations
of {1, 2, . . . , n} such that the maximum increasing subsequence has length no greater than p.
Then existing results concerning the distribution of the maximum increasing subsequence of a
random permutation will be used to determine the distribution of the maximum displacement
of the walkers for a variant of the random-turns model. In this variant the number of walkers is
greater than or equal to n, and all walkers must move to the right for time steps up to n, while
they must move to the left thereafter, returning to their starting points at time 2n.

To count the configurations we need to label the particles by their initial location on the
one-dimensional line l = 1, . . . , p. At each time step one walker will move one lattice site to
the right (R) or left (L), subject to the rule that no two particles can occupy the same lattice
site (in the counting problem we take w1 = w−1). The constraint that the particles return to
their initial positions after 2n steps requires that for each walker the number of steps to the
right equals the number of steps to the left after 2n steps, and that in total there are n steps R
and n steps L. This latter fact allows the walks to be partitioned according to the ordering of
the R and L steps, of which there are

( 2n
n

)
possibilities. The simplest of these is RnLn, which

means the first n steps are all to the right, while the final n steps are all to the left. We now
pose the question: for a given combination of {Rn,Ln} corresponding to a particular ordering
of R and L steps, how many distinct configurations of the p random-turns walkers are there?

Consider the particular ordering RnLn. Let the rightmost walker be referred to as walker
1 and the second rightmost walker be referred to as walker 2 etc. We will represent each
configuration diagrammatically as a pair of tableau (the technical definition of a tableau is
given below) corresponding to the steps Rn and Ln, respectively. In each tableau the j th row
corresponds to the j th walker. For the steps Rn, each time walker j moves a square is placed
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in row j immediately to the right of any other squares, or in the first column or row j if the
walker moves for the first time. In that square is recorded the number of the step at which the
walker moves. For the steps Ln a second tableau is constructed following the same procedure,
except that we start with the last step (which is now regarded as step 1) and work backwards.
An example of such a diagrammatical representation is given in figure 1.

In general this procedure will give a pair of diagrams in which the rows are weakly
decreasing in length (following from the non-intersection condition). By construction each of
the n squares must be labelled by a different integer 1, . . . , n (referred to as the content) with
the numbers strictly increasing along the rows and down the columns. These requirements
regarding the shape of the diagram together with the requirements regarding the content specify
a standard tableau (see for example, [11]). Notice too that each tableau in the pair must have the
same shape since the walkers must return. Conversely, given a pair of standard tableaux of the
same shape, each with content {1, . . . , n}, according to the above specifications we can write
down a unique walker configuration in the sequence RnLn. Thus there is a bijection between
pairs of standard tableaux and walker paths in the sequence RnLn. We remark that this is not
the first time a bijection between Young tableaux and vicious-walker paths has been observed:
in [12] a bijection between semi-standard tableaux and the configurations in a special case of
the lock-step random-walker model [6, 8] was identified.

In the bijective correspondence the pairs of standard tableaux are constrained so that the
number of rows is less than or equal to p (the number of walkers), or equivalently that the
length of the first column is less than or equal to p. But such pairs of standard tableaux
are well known (see for example, [11]) to be in bijective correspondence, in this case the
Robinson–Schensted correspondence, with permutations of {1, . . . , n} such that the length of
each increasing subsequence is less than or equal to p. Hence we have enumerated the number
of walks in terms of such permutations.

Proposition 1. Consider p random-turns walkers, initially equally spaced one unit apart and
returning to their initial position after 2n steps. Suppose the walkers make their steps in the
sequenceRnLn. The total number of distinct configurations equals the number of permutations
of {1, . . . , n} such that the length of the maximum increasing subsequence is less than or equal
to p.

Consider now another sequence of n R and n L steps. This sequence can be transformed
into the sequenceRnLn by elementary transpositions si which interchange the ith and (i + 1)th
members of the sequence, assumed to be L and R, respectively. Likewise, we can define
the corresponding action of si on the lattice paths and so obtain a bijection between distinct
configurations with walks following the sequenceRnLn, and distinct configurations with walks
following some combination of the sequence RnLn. We assume step i is opposite in direction
to step i + 1, and defined the action of si to interchange the order these two steps are made.
Thus if originally walker k moves to the left at step i and walker k′ moves to the right at step
i + 1, then after the action of si walker k′ moves to the right at step i and walker k moves to
the left at step i + 1. The corresponding action on the lattice paths is depicted in figure 2.

If the same walker originally moved to the left at step i then to the right at step i + 1, it
may happen that the resulting lattice path after interchange is inadmissible, in that the new
(local) configuration intersects with an existing path (note that this cannot happen in the first
two cases of figure 2). In such a circumstance we move the configuration to the right in the last
diagram of figure 2 until a permissible configuration is obtained (after so moving the left–right
pairs two vertical lines, corresponding to a stationary walker, take its place). This is illustrated
in figure 3. Note that in all cases s2

i = 1 and thus the procedure is invertible. Furthermore, the
braid relations sisi+1si = si+1sisi+1 are satisfied so the correspondence is independent of the
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Figure 2. In the first two cases distinct walkers move at steps i and i + 1, while in the last two
cases the same walker moves, and the resulting configuration is assumed to be admissible.
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Figure 3. Here the same walker moves at steps i and i + 1. Since the rule of figure 2 would lead to
inadmissible configurations in each case, si acts by propagating the new configuration to the left
and right in the two cases, respectively, until an admissible configuration is obtained.

order of application of the transpositions.
The action of the elementary transpositions thus described give a bijection between lattice

paths with steps in the sequence RnLn, and lattice paths with steps in a sequence of any
particular combination of {Rn,Ln}. Thus by making use of proposition 1 we can solve the
enumeration problem for all such walks.

Proposition 2. The result of proposition 1 for the number of walks in the sequence RnLn also
applies for any combination of {Rn,Ln}.

It is of interest to note that there are multiple integral formulae for both the number of
random permutations of {1, . . . , n} with the length of the maximum increasing subsequence
less than or equal to p, and the total number of random-turns paths with p walkers starting at
sites l′1, . . . , l

′
p and finishing at sites l1, . . . , lp in 2n steps. Let us denote these numbers by fnp

and Z2n(l
′
1, . . . , l

′
p; l1, . . . , lp), respectively. Then we have [19]

fnp = (n!)2

(2n)!

1

p!

1

(2π)p

∫ π

−π
dθ1 · · ·

∫ π

−π
dθp

( p∑
j=1

2 cos θj

)2n ∏
1�α<β�p

|eiθα − eiθβ |2 (1)
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and [9]

Z2n(l
′
1, . . . , l

′
p; l1, . . . , lp)

= 1

(2π)p

∫ π

−π
dθ1 · · ·

∫ π

−π
dθp

( p∑
j=1

2 cos θj

)2n

det[e−i(lα−l′β )θα ]α,β=1,...,p. (2)

Let us adapt (2) to propositions 1 and 2 by choosing lj = l′j = j (j = 1, . . . , p). Now

det[e−i(α−β)θα ]α,β=1,...,p =
p∏
j=1

e−i(j−1)θj det[ei(β−1)θα ]α,β=1,...,p

=
p∏
j=1

e−i(j−1)θj
∏

1�α<β�p

(eiθβ − eiθα )

where the final equality follows from the Vandermonde formula. Substituting this
into (2) shows that the integrand consists of a symmetric factor, the non-symmetric factor∏p

j=1 e−(j−1)θj , and an antisymmetric factor. Now of course the value of the integral
is unchanged if we symmetrize the integrand and divide by p!. Since the final factor
is antisymmetric, symmetrizing the integrand is equivalent to antisymmetrizing the non-
symmetric factor

∏p

j=1 e−(j−1)θj . This gives another Vandermonde product and so we have

Z2n({l′j = j}j=1,...,p; {lk = k}k=1,...,p)

= 1

p!

1

(2π)p

∫ π

−π
dθ1 · · ·

∫ π

−π
dθp

( p∑
j=1

2 cos θj

)2n ∏
1�α<β�p

|eiθβ − eiθα |2. (3)

Comparing (1) and (3) gives

Z2n({l′j = j}j=1,...,p; {lk = k}k=1,...,p) =
(

2n

n

)
fnp (4)

which is of course also an immediate corollary of propositions 1 and 2. However, once having
deduced (4), the formula (1) for fnp follows as a special case of (2).

We know from the derivation of proposition 1 that there is a bijection between
configurations of p random-turns walkers performing 2n steps in the sequence RnLn before
returning to their initial positions of all one unit apart, and pairs of standard tableaux each
of the same shape consisting of n boxes and with no more than p rows. Furthermore, in the
bijection the length of row j corresponds to the maximum displacement of walker j to the
right of its starting point (this occurs at step n). Thus if we choose p � n the constraint on the
number of rows is empty as the p − n leftmost walkers never get a chance to move, and the
bijection is with pairs of tableaux of the same shape with n boxes each. In such a situation the
asymptotics of the row lengths are known precisely [1, 2, 14, 18]. We can therefore interpret
these results in the random-walker setting.

Proposition 3. Denote by lj the displacement at time step n of walker j from its initial position
p–j . Define the scaled displacements by

l̃j := n1/3

(
lj

n1/2
− 2

)
(5)

and the corresponding scaled k-point distribution function by

ρk(l̃1, . . . , l̃k) := lim
n→∞

(
1

n1/6

)k
ρ
(n)
k (l̃1, . . . , l̃k)
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where ρ(n)k denotes the k-point distribution for the walker problem in the finite system. Then
from the results of [2, 14, 18] for the tableau problem we have

ρk(l̃1, . . . , l̃k) = det[K(l̃α, l̃β)]α,β=1,...,k (6)

where

K(x, y) := Ai(x)Ai′(y)− Ai′(x)Ai(y)

x − y

with Ai(x) denoting the Airy function.

Distribution (6) is precisely the scaled distribution of the eigenvalues at the edge of the
spectrum for GUE (random Hermitian matrices) [10, 20]. One recalls that a matrix X from
the GUE is specified by having a joint distribution of elements proportional to the Gaussian
exp(−X2), and the largest eigenvalue occurs in the neighbourhood of λ = √

2N , which is
referred to as the soft edge. By making the scaling λ → √

2N + λ/
√

2N1/6 the corresponding
distribution function has a well defined scaled limit which is given by (6). Perhaps more
relevantly to the random-walker problem, (6) coincides with the scaled distribution for free
fermions on a line confined by a one-body harmonic potential, at the edge of the support of the
density. The relevance is that there is a well known relationship between continuous models
of non-intersecting walkers and free fermions (see for example, [5]).

Regarding some physical features of proposition 3, note from (5) that the average
displacement is µ = 2n1/2 (for a recent independent proof of this result see [13]), with
standard deviation proportional to (4n)1/6 = µχ , χ = 1/3. As emphasized in [15], the
exponent χ = 1/3 is typical of two-dimensional growth models (it can be derived from the
one-dimensional Burgers equation describing such processes [21]). On this point we recall
that vicious-walker paths fixed at the endpoints as in proposition 3 form the well known (see
for example, [16]) terrace–step–kink model of a crystal surface.

The financial support of the ARC, including funds to support the visit of G Olshanski
whose lectures benefitted the present work, are acknowledged. The author is grateful for the
considered comments of a referee. Also, the remarks of T H Baker on the original manuscript
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